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We study by real-space renormalization a class of one-dimensional self- 
avoiding walks (SAWs) exhibiting a nonzero critical temperature. A linear 
renormalization transformation is carried out in closed form in a three- 
parameter subspace of SAW Hamiltonians. We find lines of fixed points 
along which the degree of localization of the fixed-point interactions varies. 
The role of the spin rescaling factor in the transformation is explicitly 
demonstrated. 
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1. iNTRODUCTION 

In this pape r  w e  car ry  out  a case s tudy in renormal iza t ion  group theory,  
employ ing  the real-space renormal iza t ion  me thod  o f  Niemeyer  and  van 
Leeuwen (1'2) (NvL).  The  case at  hand  is a cer ta in  class o f  one-d imens iona l  

(d  = 1), n - componen t  spin systems, considered in the  l imit  n - +  0. A closely 
re la ted  d = 1 system was first s tudied by  Bal ian  and  Toulouse.  (3) These 
au thors  showed tha t  i f  the number  of  spin componen t s  becomes less than  1 
(n = 1 cor responds  to the Is ing case), there  occurs  a phase  t rans i t ion  at  a 
finite tempera ture .  The  associa ted  cri t ical  exponents  are nonclass ical  integers,  
viz. ~ = 7 = ~ = v = 1 a n d / 3  = 1/8 = 0. Since the work  o f  de Gennes,  ~4~ 
des Cloizeaux,  (5) and  others  (6-9) i t  has been k n o w n  tha t  the n - +  0 l imit  o f  an 
n -componen t  spin system on a general  lat t ice yields the descr ip t ion  o f  a self 
avo id ing  walk  ( S A W )  on tha t  lattice. This  c o r r e s p o n d e n c e - - f o r m u l a t e d  in a 
par t i cu la r ly  clear  and  concise way in the append ix  o f  Ref. 9 - - h a s  been 
frui t ful  bo th  theore t ica l ly  and  exper imenta l ly  (9) in po lymer  research.  
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It was recently shown (l~ how the NvL renormalization method can 
be used in connection with the de Gennes-des Cloizeaux equivalence to obtain 
approximate values for the critical exponents of the self-avoiding walk 
problem. The present note is an application to the one-dimensional case of the 
technique developed in Ref. 11. The SAW problem on a one-dimensional 
lattice is of course trivial. We shall see that it is nevertheless worthwhile to 
study this model from the point of view of renormalization group theory, 
since one is able to derive rigorous results which clarify the working of a 
real-space renormalization group. 

Of the existing literature on exactly renormalizable systems, a large part 
is concerned with one-dimensional models. Especially worth mentioning is a 
thorough discussion by Nelson and Fisher (12) of a variety of one-dimensional 
Ising systems, in which many of the features of renormalization group theory 
are illustrated by examples. Krinsky and Furman (13) consider an exactly 
renormalizable one-dimensional spin-1 Ising model, Bell and Wilson (z4~ the 
Gaussian model in arbitrary dimension, Bleher and Sinai (15~ certain modifica- 
tions of Dyson's hierarchical models, and Niemeyer and Ruijgrok (~6) the 
classical Heisenberg chain. 

In this work we shall employ a linear renormalization transformation 
depending on a spin rescaling factor q. It will prove possible to find closed- 
form renormalization equations in a three-parameter subspace of SAW 
Hamiltonians. We shall find that there are lines of fixed points along which 
the degree of localization of the fixed-point interactions varies. The role of the 
spin rescaling factor in the transformation will be explicitly demonstrated 
and discussed, and the connection with existing work pointed out. 

2. T H E  M O D E L  

We consider a one-dimensional lattice with sites i = 1, 2,..., N and 
periodic boundary conditions. At each site there will be an n-component spin 
a~ = (cry1 , ~2,..., a~,) of length n, which takes only the 2n discrete values 

~i = (0 ..... 0, +_ n 1/2, 0 ..... 0) (1) 

These spin variables, in contrast to the spherical spins employed by Balian 
and Toulouse, have cubic symmetry. However, it will be seen that this 
difference does not change the nature of the phase transition. We briefly list 
some important properties of the spins in Eq. (1), which are easily verified: 

~ cr~ = n, ~ r ~  = cr~8~, o]'~ = ncr~Z2 (p > 3) 
=~ (2)  

(2n)-~ ~ ~r~=. = 1, lim (2n)-~ ~ cr1',~ = 8po + 8~,= 
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In Ref. 11 it was shown how one can describe the SAW problem on an 
arbitrary lattice by a Hamiltonian expressed in spins of type (1). In the present 
one-dimensional case we shall be interested in spin operators A~j defined by 

A~j = ~ c;~;P+l,~ .--a~_1.~%~, j > i (3) 

According to the interpretation of Ref. 11, such an operator corresponds to 
a segment of a self-avoiding walk between the end sites i and j, and visiting all 
intermediate sites i + 1, i + 2, . . . , j  - 1. We shall also need to consider the 
operator A~ defined by 

A,~ = ~ c;~?+ 1,~ = c;,,e~+ 1.~ (4) 

This operator clearly corresponds to a closed loop from site i to site i + l 
and back. In the sequel we shall employ the terms segment operator and closed 
loop operator for expressions of the form of Eqs. (3) and (4), respectively. 
Two operators will be called diseonneeted if they do not involve any common 
sites, adjacent if they involve only common end sites, and overlapping 
otherwise. 

Let us consider the (reduced) Hamiltonian 

N N N-I 

i=l i=i k=l 

The interaction constants J0 and J /~-  ~ will be referred to as the weights of 
the corresponding operators. The partition function Z ,  is defined by 

Z ,  = (2n) - N ~ e-  H (6) 
(ai}.  

By choosing the normalization factor (2n) -u, we have added to the free 
energy a singular term N log 2n, which is just the entropy of N free n-com- 
ponent spins. The factor (2n) -N of course drops out in the calculation of 
averages with respect to e -H. As we shall see, for n --~- 0 the partition function 
(6) differs from unity only by terms of order n. We therefore define the free 
energy per spin and per spin component as 

f = - lim lim(Un)-~ log Z~ (7) 
N-*~o n-~0 

Note that we let n --~ 0 first, so that we are actually taking the thermodynamic 
limit of a system of zero-component spins. 

The n = 0 average of  an arbitrary function A of the spin variables is 
defined by 

<A> = lim lim<A>~, <A), = Z,-~(Zn) -N ~ A{a~}e -~ (8) 
N~ oo n ~  co {a~} 
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Special averages of interest will be the pair correlations obtained by taking 
A{n~} = ~jle~l. We remark that general correlation functions can also be 
expressed as field derivatives off{H~}, a quantity defined as the free energy of 
the Hamiltonian (5) to which a term ~ ~ H~e~, has been added. 

Before passing on to renormalization, we shall investigate some properties 
of this model by classical methods. The exponential in Eq. (6) is the generating 
function for self-avoiding walks. By expanding it in a Taylor series, one can 
" h o o k "  the elementary walk segments A~j together to form longer walks. 
Indeed, using (3) and the second of relations (2), we have 

AijAjz = Aiz (9) 

With the aid of relations (2) the sum on {~} in (6) can be calculated for each 
term in the Taylor expansion. Whenever in the expansion a term occurs with 
a product of overlapping segments, the third of relations (2) introduces 
extra factors n. The contribution of such a term to the partition function Z ,  
is of order n 2, and its contributions to the free energy and the correlation 
functions vanish proportionally to n as n -+ 0. In general we shall call a spin 
operator A constructed from the A~j o f  order n ~ if products containing A 
contribute to Z ,  only to order n p and higher. One can establish the following 
properties, which we number for easy reference: 

(P1) The segment operators A~j are of order n. 
(P2) A product of adjacent or disconnected segment operators is of 

order n. 
(P3) A product of overlapping operators is of order n 2 or higher. 
(P4) The product of a closed-loop operator and any other operator is 

of order n 2 or higher. 

Each term in the Taylor expansion of e-Z~ naturally corresponds to a 
lattice graph. For a general lattice one can show without difficulty that the 
free energy f is a sum of contributions stemming from all the closed non- 
intersecting loops that can be constructed on the lattice. Products of dis- 
connected loops are by (P4) of order n 2 and do not contribute as n -+ 0. In 
the present case the only possible loops are (i) those starting from a site i, 
visiting site i + 1, and returning to i, and (ii) a single loop of length N all 
around the chain. The type (i) loops arise only in the first and second terms 
of the Taylor expansion and their weights are easily found in terms of Jo, 
J, and/~. Let the large loop consist of L segments of lengths kl ,  k2,..., kL. 
Denoting its contribution for n -+ 0 by CN, we have 

f =  - J o  - �89 _ lim N - 1 C N  (10) 
N ~ o O  
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with 

CN = ~ ~ "" ~ 3(kl + . . -+  k L -  N)JLI~ z~=lL'k'-l' 
L~>I k1>_-i kL~>l 

= (t, + j ) N  _ t~N (11)  

The presence of the last term in Eq. (10) is evidently due to the choice of 
cyclic boundary conditions; in the case of free boundaries it would be absent. 
Thus no thermodynamic limit exists unless It x] ~< l and [ix + JI ~< 1. 

The pair correlation @01%1) can similarly be shown (11~ to be a sum of 
contributions, each corresponding to a self-avoiding walk beginning at the 
origin and ending at site j. By summing as in (11) on all possible linear 
sequences of adjacent walk segments, one finds 

(cro~%~) = J(I* + j)s-1 = j(l~ + j ) - le -m .... (12) 

where the correlation length ~:corr is given by 

~oorr = [ - log( t  x + J ) ] - i  (13) 

Using Eq. (12) and the property that ( a ~ )  = 1, we find for the susceptibility 

x -  ~ ( ~ 0 ~ , % 1 ~ )  = 
(1 /z) 2 j2  

j = _  ~ (1 - ~ - J )~ (14) 

This shows that x diverges for/~ + J = 1, which equation indicates a hyper- 
plane of critical Hamiltonians. For  the critical exponents ~, v, and 7, defined 
in the usual way, we easily find from Eqs. (12)-(14) 

= 1, v =  1, 7 =  1 (15) 

independently of ~ and J. For the special case with Jo = 0 and t~ = 0 (so 
that there is only a nearest neighbor coupling J)  it is possible to calculate 
Z ,  and the correlation functions explicitly for arbitrary n, e.g., by the transfer- 
matrix method. One finds 

= ( ~ ) N  -- ( c ~  u + ( c ~  1) n (16) 
Z ,  n + (n 1) n n 

From this expression one easily deduces the free energy f according to Eq. 
(7) and finds a result in agreement with (10). The order of the two limits in 
(7) appears to be unimportant. This allows us to assign a value to the ex- 
ponent c~ in the following way. At fixed n > 0 and for N - +  oo we may obtain 
from (16) a free energyf~ given by 

1 ( s inhnJlogCOShnJ+n- 1 ) 
f " =  - -  n max log ~ ,  n (17) 

leading to a transition with ~ = 1. Thus we have by analytic continuation 
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that a equals 1 also for n = 0, We remark finally that the exponents ~,, % v, 
and ~7 found above for the case of a short-range interaction are identical to 
those found by Balian and Toulouse (3~ and satisfy the usual scaling relations. 

3. THE R E N O R M A L I Z A T I O N  T R A N S F O R M A T I O N  

In this section we shall define a renormalization transformation for the 
Hamiltonian (5). A more general discussion of such transformations for 
n = 0 Hamiltonians can be found in Ref. 11. We divide the lattice up into 
cells of two spins each and associate with every pair ~2~- ~ and a2~ a cell spin 
IJ-,- A renormalization transformation is defined (2~ by the matrix 

P({~),  {~,)) = ] - I  p(~J; ~J-1 ,  ~J) (18) 
] 

with the weight factor p normalized such that 

(2n) -1 ~P(~- ;  t~l, ~2) = 1 (19) 

The renormalized Hamiltonian H '  corresponding to H is then defined by 

e x p ( - n G  - H'{~j}) = (2n) -N ~ P({I~j}, {t~}) exp(-H{t~}) 
{at} 

-= R[exp( -  H)] (20) 

where G is chosen such that H'{~j} contains no constant (spin-independent) 
term. More in general we define for any spin operator .4{~} its renormalized 
counterpart 

R[A] = (2n)-~v ~ p({g.j}, {~,})A{o,} (21) 

In this work we shall employ a one-parameter renormalization trans- 
formation Rq specified by the following choice (11~ for p: 

p(p~; t~l, a2) = �88 E [n-2/~2(cr~ + ~r~.) + n-lq/z~(el. + cr2~)] (22) 

The transformation Rq is entirely determined by the single-cell averages of 
an arbitrary cell i. For these one obtains with the help of (21) and (22) 

Rq[1] = 1 

R~[~,~] = �89 + t,,~) 
2 0.2 

R~[a2~_ 1,~1~2t,~] = 0 

Rq[az~,~] = �89 

R~[~,_ 1 , ,1~, , j  = �89 

(23a) 

(23h) 

(23c) 
(23d) 

(230 
(23f) 
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With the aid of  the symmetry properties ofp(~.; al,  ~2) one easily finds the 
remaining cell averages. 

An important  characteristic of  Rq is its linearity. Properties of  linear 
transformations have been discussed by Bell and Wilson, (14,17~ Nelson and 
Fisher, (12) and Niemeyer and van Leeuwen. (18)'2 For  our case the main results 
are easily rederived as follows. Let ( .- . ) '  denote the thermal average with 
respect to the renormalized Hamiltonian H'{~.~}. Let furthermore J '  stand 
for a set of  renormalized coupling constants obtained from an initial set J. 
Reexpressing the pair correlation function G(J ' ,  r) - (t~Oyt~r~)' in terms of 
the original site spins, one finds 

G(J ' ,  r) = �88 2r - 1) + 2G(J, 2r) + G(J, 2r + 1)1 (24) 

whence for r - +  

a ( J ' ,  r) • q2a(J, 2r) (25) 

It is because of this proportionality between the pair correlations that one 
calls Rq a linear t ransformation2 A special property of  such a linear trans- 
formation is derived in the usual way. av-22~ Suppose that the interactions 
J, J' , . . .  converge to a fixed-point interaction J* and that G(J*, r) ~ Ar ~-" as 
r -+ oo. Substitution in (25) yields the well-known relation 

q = q* - 2 (~-1)/~ (26) 

i.e., a connection between the seemingly arbitrary parameter  q in the trans- 
formation and the physical exponent ~7. We have to conclude that unless q 
takes the special (but unknown) value q* given by (26), the transformation 
cannot have a fixed point with a correlation function as assumed. In approxi- 
mate calculations with linear transformations the proper adjustment of  the 
parameter  presents a considerable problem, since one usually finds fixed 
points in a whole range of parameter  values. This difficulty is extensively 
discussed by Bell and Wilson. ~4) The example of  the next section will show 
explicitly what happens to the transformation for improper values of  q. 

General considerations allow a further prediction. Following Bell and 
Wilson a4~ and Niemeyer and van Leeuwen, aS~ one may define a Legendre 
transformation L~ (which does not reduce the number of  spins) by the weight 
factor 

p(Ix,, th) = � 8 9  (n-2 2 2 t~ai~ + n-  l s l h ,~ )  (27) 

2 Nonlinear renormalization transformations have been studied by Bell and Wilson a7) 
by perturbation theory. The best known nonlinear transformation is perhaps the so- 
called sign-rule transformation, m For an exactly soluble nonlinear case see Nelson 
and Fisher. ~12) 

3 The name is misleading: The transformation J --+ J '  is not linear. Niemeyer and van 
Leeuwen <2) prefer to speak instead of "linear weight factors," but this term is not 
quite appropriate here either in view of the quadratic terms in (22). 
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One shows easily that Ls and R~ commute. It follows in the usual way that 
if Rq. has a fixed-point Hamiltonian H*, then it has a one-parameter family 
of fixed-point Hamiltonians Ha* given by 

exp( -  n G s -  Hs*) = Ls[exp(- H*)] (28) 

Since L~ leaves the partition function invariant, all Hamiltonians H~* obtained 
from a given H* have the same critical properties. Moreover, one expects the 
transformation Rq to possess a marginal eigenvalue hi = 1 along the line 
H~*. ~ All these properties will also be illustrated explicitly in the next section. 

4. AN EXACTLY R E N O R M A L I Z A B L E  CASE 

In Appendix A it is shown that if one applies to the Hamiltonian H 
given in (5) the renormalization transformation Rq and expands in powers of 
n, then the new Hamiltonian H '  is, to lowest order in n, again of the form 
(5), but with renormalized coupling constants. The detailed calculations show 
that for N -+ oo we have the following explicit recursion: 

j ,  = �88 1 + I~ + j ) 2  (29a) 

i~, = (t ~ + j ) 2  _ �88 1 + i~ + j ) 2  (29b) 

Furthermore, the renormalized coupling Jo' and the constant G are related 
to the original couplings by 

Jo' = �88 + �89 _ _3~q~S2(1 + i~ + j )~  (30) 

G -- 7N(Jo + �89 (31) 

Hence we have found a three-parameter family of interactions, depending on 
~, J, and Jo, which is invariant under the one-parameter transformation Rq. 
The renormalization equations (29)-(31) depend only on q2, so that we may 
take q >/0. They assume a somewhat more elegant form in the variables 
J, ~ --/z + J, and Jo + �89 One finds that the ensemble of fixed points has 
the following structure, (i) q* = 1, ~:* = 1, J arbitrary; (ii) q* = 2, ~* = 0, 
J arbitrary; (iii) q and ~: arbitrary, J* = 0. With the aid of (30) one can also 
find the corresponding fixed-point values Jo* in the three cases. The fixed 
points of type (iii) are trivial and do not need further discussion. Those of 
type (i) and those of type (ii) form lines of fixed points parametrized by the 
coupling strength J. The corresponding fixed-point values of the interactions 
j / ~ c - 1  in the Hamiltonian (5) are: 

q* = 1: (J/zk-t) * = J(1 - j ) k - t  (32) 

q* = 2: ( j t ~ - l ) ,  = j ( _ j ) ~ - z  (33) 

For a more general discussion of the invariance properties of the renormalization group 
see WegnerJ 2~ 
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We consider first the case q* = 1. In this case the effective range of the 
fixed-point interaction is Ilogl 1 - Jl] - 1. For J = 1 the fixed-point Hamilton- 
ian is a pure nearest neighbor one. As I I - JI grows, the fixed-point inter- 
action becomes less and less localized, until for 11 - J J  > 1 it becomes 
unphysical. The fixed-point matrix [~(/~', J ' ,  Jo')/~(tx, J, J0)l ]* is easily calcu- 
lated and diagonalized. One finds for the three eigenvalues ~r, ,~1, and ~2, 
and for the critical exponent v = log 2/log At, 

~r = 2, ~1 = 1, A2 = �88 v = 1 (34) 

These results are independent of the value of J, as they should be. Thus, as 
expected, we find one relevant and one marginal eigenvalue. By setting q = 1 
in Eq. (26), one obtains, furthermore, ~7 = 1. Hence the values for v and 7/ 
agree with those found in Section 2 from the direct solution. 

The line of fixed points obtained for q* = 2 passes through J =/~  = 0 
and hence is a line of infinite-temperature fixed points. For  [JI > 1 the 
interaction becomes unphysical. The fixed-point matrix has again a marginal 
eigenvalue 1, and furthermore the eigenvalues �88 and 0. 

We shall now study the flow diagram in the Js e plane that arises if one 
iterates the transformation Rq. The third coordinate J0 will be disregarded. 
For  the (I + 1)th iteration, Eqs. (30) read in terms of J and ~: 

J(t+ l) = �88 + ~(~))2 (35a) 

~(l+ 1) = ~)  (35b) 

After the first iteration f has a nonnegative value. The transformation (35) 
is furthermore symmetric with respect to J - - + - J .  We can therefore restrict 
ourselves to the positive J f  quadrant. From initial values ~ = ~(o) and J = 
J(o) one obtains after I iterations 

~:(1) = ~d) (36a) 

_ 2 z 2 (1..2~,/1 ~:,0)'~ . (36b) 

A flow field is obtained as [d(J(z), ~(z))/dl]z= o. Qualitative flow diagrams 
have been plotted for five different cases: 0 < q < 1; q = 1; 1 < q < 2; 
q = 2; and q > 2 (Fig. 1). The line ~: = 1 represents the only nontrivial set 
of fixed points. It is a fixed line only when q = 1. The flow diagrams show 
what happens if q r 1. The line ~: = 1 of  critical Hamiltonians is still invari- 
ant. This should of  course be so, since the transformation Rq, even with the 
" w r o n g "  q, leaves the partition function invariant, due to Eq. (19). However, 
for q -r 1, the transformation Rq moves the initial Hamiltonian along the 
critical line to an unphysical part of  that line. For q < 1, the interaction 
strength J tends to zero and the range of the fixed-point interaction tends to 
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(a) (b) 

0 _,so-.- I = J - J 

(c) (d) 

(b )  q=2 
( c )  1 < q < 2  

- - J ( d )  q =  1 
(el (e) O < q < l  

Fig. 1. Qualitative flow diagrams in the J~ plane resulting from Eqs. (35). Dots are 
fixed points; heavy lines are fixed lines. 

infinity. For q > 1, the interaction strength J tends to infinity, and the fixed- 
point interactions ( j / ~ - l ) ,  become infinitely strong but oscillatory in the 
distance k. 

This shows explicitly that proper adjustment of the parameter q is needed 
to keep the strength and the range of the interactions in check in the course 
of the iterations. The parallel with Wilson's E expansion (19-22) of the Ginz- 
burg-Landau Hamiltonian is obvious. In this Hamiltonian the interaction is 
represented by a squared gradient term of the spin field. This term is by its 
nature always short-ranged, but its strength may vary. In the e expansion 
an undetermined spin rescaling factor occurs (usually called ~), which is 
adjusted such that the strength of the gradient term remains equal to a fixed 
constant. Only then can one find a fixed point, and a relation between 
and ~/ similar to Eq. (26) holds. Thus our parameter q may rightfully be 
considered as the spin rescaling factor of the real-space renormalization 
method. 
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5. C O N C L U S I O N  

A generalized one-dimensional self-avoiding walk, exhibiting a nonzero 
critical temperature, offers an instructive example of  the working of  a linear 
renormalization group. A one-parameter renormalization transformation has 
been carried out in closed form in a subspace of self-avoiding-walk Hamil- 
tonians. Lines of fixed points were obtained along which the degree of 
localization of the interactions varies. Flow fields in Hamiltonian space have 
been constructed for different values of the parameter q in the transformation. 
The close analogy o fq  to the spin rescaling factor in the E expansion has been 
pointed out. 

A P P E N D I X  A. D E R I V A T I O N  OF THE R E C U R R E N C E  
RELATIONS FOR H'  A N D  G 

In this appendix we shall calculate in the limit n ---> 0 the renormalized 
Hamiltonian H '  and the free energy contribution G. Both are formally 
defined by Eq. (20), in which we take for R the transformation Rq defined by 
(21), (18), and (22) and for the initial Hamiltonian H the expression (5). 

Before embarking upon the actual calculation we shall discuss a number 
of simplifications that occur in the renormalization procedure as one lets n 
tend to zero. In this limit one can neglect in the renormalized expression 
nG + H '  any terms that are of order n 2 or higher, i.e., whose contributions 
to the free energy (7) and to the correlation functions (t2) vanish. The order 
in n of  any spin operator occurring in the calculation is easily determined 
according to the rules (P1)-(P4) of Section 2. With the aid of the renormaliza- 
tion rules (23) one also verifies that the transformation Rq leaves the order 
in n of an operator unchanged. 

We shall call a general product A = A~6.1A~. 2 ... (with all ak ) 1) celt- 

d isconnected i f  the operators A~gj~ can be divided into two groups not involving 
any common cell. Since Rq factorizes over the cells, the average Rq[A] is just 
the product of  the averages of the cell-connected groups in A. These averages 
can be calculated by Eqs. (23). It is not hard to verify that the only cell- 
connected groups whose averages neither vanish nor are of order n 2 belong 
to one of the three following types: 

A~ (Ala) 

2 A,~+I = Au (Alb) 

A~I~2A~2~3 ... A ~ _ l i  ~ = A~i~ (Alc) 

The averages of  the operator products in (A1) are easily calculated with the 
aid of  (23). Let for given i and k the integers I and K be such that i = 2I - 1 
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or i = 2/, and k = 2K - 1 or k = 2K. Let the operators AIK be defined in 
a manner analogous to (3), but with Ix spins instead of a spins. Then we find 

1 t Rq[A,~] = n~,2l-1 + 3n3,,2, + ~3~,2~A~I (A2a) 

Rq[A2z_ 1,2z] = 0 (A2b) 

Rq[A,k] = ~1"~2~'~K, k > i, K > I (A2c) 

Relation (A2c) expresses that a walk segment between two sites i and k is 
mapped onto a walk segment between the corresponding cells I and K. 
Intermediate sites of the walk become intermediate cells. Relations (A2a) 
and (A2b) refer to special cases. In the sequel we shall show how one can 
find the renormalized nG+ H' with the aid of (A2) and the rules (P1)-(P4) 
concerning the order in n. 

We recall that Rq can be considered as a {tx,}-dependent average over the 
variables {a,}. Le t  R~ "m denote the corresponding cumulant average. Thus 
we can write for (20) the following cumulant expansion: 

e x p ( - n G - H ' ) = e x p  {v,,, ~ ~ Jf~-'-'--!~v~fl Ra~ [ ~I~j A~'~'] (A3) 

where we have abbreviated J~ = J /F -  ~ for k = 1, 2,.... The prime indicates 
that the summation is to be performed on all sets {v~j} with v~. > 0, with the 
exception of the case where all v~j vanish. The expression for R~ ~m in the 
terms of R a reads <z~ 

u O" 

~,,  1)~_ 1 1 (Rq[l~j ,, ]1 (A4) 
= I - [  t (k  - ( -  

l = 1  {lCm,ttmt 1} m = l  iJ" 

Each term {v~j} in (A4) corresponds to a decomposition of a collection of 
v = ~ j  v~; objects [with v~j the number of objects of type (i, j')] into k = 
~m= 1 km subsets (with km the multiplicity of  the mth subset). The double 
prime on the inner summation sign indicates that the set of nonnegative 
integers {km, IZmi]} has to satisfy the relation ~,, kmtzrmy = v~j. General cumu- 
lant properties ensure that the cumulant (A4) vanishes unless the product 
I-Lj A~}~ is cell-connected. 

The above discussion showed that the product on I in (A4) is a product 
of segment operators and closed-loop operators in the p. spins, and of 
constants of  order n. The only cases to be retained (all others being of order 
n ~ or higher) are (i) those where the product contains only a single closed-loop 
operator or constant of order n; (ii) those where the product contains an 
arbitrary number of nonoverlapping (open-ended) segment operators. Case 
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(ii) contains the special case (iia) where we have two identical segment 
operators A},~+ 1 which together form a closed-loop operator. In the general 
case, to be denoted by (iib), one easily sees that the only contributions stem 
from products containing a single sequence of adjacent segment operators: 
by (A2), disconnected sequences can stem only from a cell-disconnected 
product 1-f~j A~y, which is known not to contribute. From these arguments 
we conclude that the renormalized Hamiltonian H '  is again of the form (5). 

We shall now calculate the new coupling constants J~' and the free energy 
contribution G. According to (A4) contributions to case (i) arise in only two 
different types of cumulants, viz. (a) if v~j = 8~3jr for some r, or (b) if v~j = 
23~r3j.r+l for some r. For the type (a) cumulants the summations in (A4) 
reduce to one single term; for the type (b) cumulants Eq. (A4) contains two 
terms of which only one contributes to case (i). The total contribution to case 
(i) is collected by substituting the relevant terms from the cumulants (A4) 
into (A3) and summing on r. Indicating this contribution by the superscript 
(1), we find, using that Jk = J/z~-I for k >/ 1, 

_ _  1 2 [-rig H'p  =Jo Ro[A  ] +  Ro[AL+d 

= �89188 + _~j2) + (�88 + 8 L J2) ~ AII (A5) 

Contributions to case (iia) arise only in those cumulant terms in (A4) 
that are the product of  two R, averages, i.e., that have either l = 1 and kl = 2, 
or l = 2 and kl = k2 = 1. In case (iia) both R~ averages are equal to an 
operator A;,~+I for an arbitrary I, and hence all contributions to this case 
can be found by considering all possible 1-f~j A~'y whose average is of type 
A;,~+ 1. The only A, s operators involved are A~, ~+ 1, At,,+ 2, and A~,, + a. Collect- 
ing all possibilities, using (A2), and summing on L we find for the case (iia) 
contributions to n G +  H' 

[ - n G -  H'I  C2~ = -3-3~q'J2(1 + ix + J)'  ~ A'u (a6) 
I 

Combining (A5) and (A6), we obtain the expressions (30) and (31) for J0' 
and G. 

Finally, we shall find all contributions from the cumulants to the opera- 
tors A~.z+R for arbitrary R/>  1 [case (iib) above]. The operator A~,z+n can 
arise as a product of  at most R different Rr averages. Each Rq average, in 
turn, is (in a unique way) a product of disconnected segments, each segment 
being the average of  a cell-connected group. We shall first select all contribu- 
tions where A}.~+n is formed from s such disconnected segments (s = 1, 
2, . . ,  R). These segments can be located on the ~ lattice in (~-}) different 
ways, (f-~) being the number of ways of putting s - 1 "segment separations" 
on the intermediate sites I + 1 .... , I + R - 1. Each subset of segments not 
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containing any pair of adjacent segments may occur as the result of a single 
Rq average. Let cs~ be the number of ways to divide a configuration of s 
segments into k such subsets. By (A3) a product of k of the Rq averages has a 
factor ( k -  1)! ( - 1 ) ~ - L  Consider first a single segment in the interval 
be tween/and  I + R, say running from Kto  K + L. Such a segment may arise, 
by (A2), as the image of a segment on the a lattice starting in cell Kand  ending 
in cell K + L. This gives four possible a segments of lengths l --- 2L - 1, 
2L, 2L, and 2L + 1. The weight of a ~ segment of length l is Jrtzl - r, where r 
is the number of different operators A,j that form the segment. There are 
(r-I)  ways to obtain a segment of length l from r operators A~j. Hence the 
total weight w~ of a segment of length l is 

(l r -  1\ ~ ~ j)z-~ (A7) wl = r=z 1) J t ~ -  = J(~ + 

The weight wL' of the image segment of length L on the ~ lattice is found 
by combining the four possibilities and renormalizing according to (A2). 
One gets 

w' 1 2 1 ~ . [ l + ~ + d ) ~  d)~ (AS) L =~q(w2z-1 + 2WL + W2L+I) =74 qJ~ I z + J  (t z+ 

The contribution JR(s, k) to the weight of A~,z+R is just the product of 
the weights of the s segments, multiplied by the combinatorial factor c~, 

[1 2~[1  + /~  + J)2*(/x + j)2r~ (A9) 
/ 

The expression (29) for JR' = J'/z'R- ~ is obtained by summing (A9) on m and 
s and using the identity 

(k - 1)! ( -  1)~c,k = ( - 1 ) '  (AIO) 
k = l  

which is proved in Appendix B. 

A P P E N D I X  B 

Let csm be the number of ways in which one can divide s linearly ordered 
objects ( s - -  1, 2,...) into rn different groups (m = 1, 2 ..... s) such that no 
neighboring pair is in the same group. From this definition follows the 
recursion relation 

Cam = (m -- 1)cs-l,m + Cs-l.m-x (BI) 

Defining c~ = ~ = 1  ( - 1 ) m - l (  m - 1)! csm, one derives easily with the aid of 
(B1) the recursion cs = -c~-1 .  With the boundary condition cl = cx~ = 1 
this yields (A10). 
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